Drawing clock face in Mathematica (looking for a better solution)


I am trying to find a general solution for drawing clock face like graphical objects in Mathematica. I've already implemented a version of my own, but I think a much better solution must exist. A neater version with less code or clearer thought process would be appreciated.

My version:

radius = 1;
elementList = 
  Join[Table[i, {i, 3, 1, -1}], Table[i, {i, 12, 4, -1}]];
elementNumber = Length[elementList];
thetaList = Table[i, {i, 0, 2 Pi, 2 Pi/elementNumber}][[1 ;; 12]];
coordinateList = Map[{radius*Cos[#], radius*Sin[#]} &, thetaList];
objectList = 
  Map[Style[#, FontFamily -> "Georgia", FontSize -> 30] &, 
   elementList];
Graphics[
 Join[
  MapThread[Text[#1, #2] &, {objectList, coordinateList}],
  {Circle[{0, 0}, 1.2*radius]}
  ]
 ]

enter image description here


Answers:


Here is one way to make a clock:

clockFace = Import["http://i.imgur.com/ufanv.jpg"];
{hour, minute, second} = Take[Date[], -3];
hour = Mod[hour, 12] + minute/60.; 
Graphics3D[
{
 {Texture[clockFace], 
      Polygon[{{-1, -1, 0}, {1, -1, 0}, {1, 1, 0}, {-1, 1, 0}},
         VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}
      ]
 }, 
 {Black, AbsoluteThickness[8], 
      Line[{{0, 0, 0}, 
       .55 {Cos[Pi/2 - 2 Pi hour/12], Sin[Pi/2 - 2 Pi hour/12], 0}}
      ]
 },
 {Black, AbsoluteThickness[5], 
      Line[{{0, 0, 0}, 
       .8 {Cos[Pi/2 - 2 Pi minute/60], Sin[Pi/2 - 2 Pi minute/60], 0}}
      ]
 }
}, 
Boxed -> False, Lighting -> "Neutral"]

a clock with a nice face generated by Mathematica

Addition

Here is a rotating, spinning 3D clock for your amusement:

clockFace = Import["http://i.imgur.com/ufanv.jpg"];
vtc = VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
hand[thickness_, radius_, time_] := {AbsoluteThickness[thickness],
   Line[{{0, 0, -1}, {radius Cos[Pi/2 + 2 Pi time],
      radius Sin[Pi/2 + 2 Pi time], -1}}],
   Line[{{0, 0, 1}, {radius Cos[Pi/2 - 2 Pi time],
      radius Sin[Pi/2 - 2 Pi time], 1}}],
   Line[{{0, -1, 0}, {radius Cos[Pi/2 - 2 Pi time], -1,
      radius Sin[Pi/2 - 2 Pi time]}}],
   Line[{{0, 1, 0}, {radius Cos[Pi/2 + 2 Pi time], 1,
      radius Sin[Pi/2 + 2 Pi time]}}],
   Line[{{-1, 0, 0}, {-1, radius Cos[Pi/2 + 2 Pi time],
      radius Sin[Pi/2 + 2 Pi time]}}],
   Line[{{1, 0, 0}, {1, radius Cos[Pi/2 - 2 Pi time],
      radius Sin[Pi/2 - 2 Pi time]}}]};
Dynamic[
  {hour, minute, second} = Take[Date[], -3];
  hour = Mod[hour, 12] + minute/60.;
  Graphics3D[{
    {Texture[clockFace],
     Polygon[{{1, -1, -1}, {-1, -1, -1}, {-1, 1, -1}, {1, 1, -1}},
      vtc],
     Polygon[{{-1, -1, 1}, {1, -1, 1}, {1, 1, 1}, {-1, 1, 1}}, vtc],
     Polygon[{{-1, 1, -1}, {-1, -1, -1}, {-1, -1, 1}, {-1, 1, 1}},
      vtc], Polygon[{{1, -1, -1}, {1, 1, -1}, {1, 1, 1}, {1, -1, 1}},
      vtc], Polygon[{{-1, -1, -1}, {1, -1, -1}, {1, -1, 1}, {-1, -1,
        1}}, vtc],
     Polygon[{{1, 1, -1}, {-1, 1, -1}, {-1, 1, 1}, {1, 1, 1}}, vtc]
     }, {Black,
     hand[8, .55, hour/12],
     hand[5, .8, minute/60],
     hand[3, .8, second/60]
     }
    },
   Boxed -> False, Lighting -> "Neutral",
   ViewPoint ->
    5 {Cos[2 Pi second/60], Sin[2 Pi second/60],
      Sin[2 Pi second/30]}, SphericalRegion -> True,
Background -> Black, ImageSize -> Full]] // Deploy

3D clock